Boundary conditions and estimates for the linearized Navier-Stokes equations on staggered grids

نویسندگان

  • Wendy Kress
  • Jonas Nilsson
چکیده

In this paper we consider the linearized Navier-Stokes equations in two dimensions under specified boundary conditions. We study both the continuous case and a discretization using a second order finite difference method on a staggered grid and derive estimates for both the analytic solution and the approximation on staggered grids. We present numerical experiments to verify our results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rxqgdu \ & Rqglwlrqv Dqg ( Vwlpdwhv Iru Wkh 6 Whdg \ 6 Wrnhv ( Txdwlrqv Rq 6 Wdjjhuhg * Ulgv % Huwlo * Xvwdivvrq - Rqdv 1 Lovvrq

We consider the steady state Stokes equations, describing low speed ow and derive estimates of the solution for various types of boundary conditions. We formulate the boundary conditions in a new way, such that the boundary value problem becomes non-singular. By using a di erence approximation on a staggered grid we are able to derive a non-singular approximation in a direct way. Furthermore, w...

متن کامل

Solving the linearized Navier–Stokes equations using semi-Toeplitz preconditioning

A semi-Toeplitz preconditioner for the linearized Navier– Stokes equation for compressible flow is proposed and tested. The preconditioner is applied to the linear system of equations to be solved in each time step of an implicit method. The equations are solved with flat plate boundary conditions and are linearized around the Blasius solution. The grids are stretched in the normal direction to...

متن کامل

A Multigrid Solver for the Steady State Navier-stokes Equations Using the Pressure-poisson Formulation

This paper presents an eecient multigrid solver for steady-state Navier-Stokes equations in 2D on non-staggered grids. The pressure Poisson equation formulation is used, together with a nite volume discretization. A discretization of the boundary conditions for pressure and velocities is presented. An eecient multigrid algorithm for solving the resulting discrete equations is then developed. Th...

متن کامل

An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner

The projection method is a widely used fractional-step algorithm for solving the incompressible Navier–Stokes equations. Despite numerous improvements to the methodology, however, imposing physical boundary conditions with projection-based fluid solvers remains difficult, and obtaining high-order accuracy may not be possible for some choices of boundary conditions. In this work, we present an u...

متن کامل

A High Order Accurate MultiGrid Pressure Correction Algorithm for Incompressible Navier-Stokes Equations

A fourth-order accurate finite-difference compact numerical scheme coupled with a geometric MultiGrid technique is introduced for an efficient incompressible NavierStokes solver on staggered meshes. Incompressibility condition is enforced iteratively by solving a Poisson-type equation performing global pressure correction. Its application is the most computationally demanding part of the algori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001